THE BEST Pocket physics handbook in the galaxy...

EVER

Institute of Physics

The National Physical Laboratory is operated on behalf of the DTI by NPL Management Limited, a wholly owned subsidiary of Serco Group plc

ELECTRIC CIRCUITS

CURRENT AND CIRCUITS

Charge (Q) coulomb (\mathbb{C}) Current (I) ampere (A)

- Potential difference (V) volt (V)

Power (P) watt (W)

Resistance (\mathbf{R}) ohm (Ω)

In series:

In parallel:

Cells and EMF

coulomb is the basic unit of charge
ampere is a current of 1 coulomb per second *

1 **volt** is the **PD** between two points when 1 joule is lost or gained by each coulomb moving between those points

Energy dissipated per second = IV

1 ohm is one volt per amp **R** = **V/I** ★

 $\boldsymbol{R}_{\text{Total}} = \boldsymbol{R}_1 + \boldsymbol{R}_2$

 $1/R_{\text{Total}} = 1/R_1 + 1/R_2$

CAPACITORS

Q is the charge displaced from one plate to the other via the circuit **Capacitance (C) Farad (F)**: number of coulombs displaced per volt $C = Q/V = \mathcal{E}_o A/d$ (A = Area of each plate d = plate separation) (in a vacuum)

Energy stored = ${}^{1}/{}_{2}QV = {}^{1}/{}_{2}CV^{2} = \frac{{}^{1}/{}_{2}Q^{2}}{C}$ (Compare with a elastic materials)

In series: $1/C_{\text{Total}} = 1/C_1 + 1/C_2$ in parallel: $C_{\text{Total}} = C_1 + C_2$

Capacitor Discharge

(Compare with Radioactive Decay)

PD across R : V = Q/C, and I = V/RThus I = Q/RC so I is proportional to QSo rate of loss of Q (i.e. I) is proportional to Q

Therefore $Q_t = Q_o e^{\left(\frac{-t}{Rc}\right)}$

RC is the time constant

= time for *Q* to fall to 1/e of original value "Full" discharge in about 5*RC* seconds

Exponential curve'(never touches time axis)

FIELDS

FIELDS DUE TO AN ISOLATED SPHERICAL CHARGE OR MASS

Inverse Square Law of Force Due to an isolated charge (**Q**) or mass (**M**)

Field Strength (E) Vector Force per unit charge (or unit mass) E g

E: **F** on 1 coulomb = $\frac{\mathbf{k} \mathbf{Q}}{\mathbf{r}^2}$ (since q = 1) **g**: **F** on 1 kilogram = $-\mathbf{G}\mathbf{M}$ (since m = 1) \mathbf{r}^2

(In general \mathcal{E}_o is multiplied by \mathcal{E}_r the relative permittivity)

Field Strength = Negative Potential gradient = - d V/dr (always)

Field Potential (*V*) *Scalar* Potential energy of unit electric charge (or unit mass) Energy required to bring unit electric charge (or mass) from infinity to the point in question. **Electrical:** (repulsive force for positive *Q* so energy supplied) $V_{elec} = kQ/r$ **Gravitation:** (attractive force for positive *M* so potential well) $V_{grav} = -GM/r$

Potential Energy of charge q (mass m) in the field: qV_{elec} ; mV_{grav}

PARALLEL FIELDS

Field Strength is uniform and the negative of the potential gradient E = -V/d

MAGNETIC FIELDS

Magnetic Field Strength (B) **tesla** (T) *Vector* 1 tesla is the magnetic field strength that gives rise to a force of 1 N per metre of a wire carrying 1 amp. Density of field lines in diagrams is proportional to field strength.

Forces in a magnetic field

1) on a wire length ℓ carrying current *I* (assume all are perpendicular). $F = B I \ell$ 2) on a charge q travelling with speed v perpendicular to magnetic field: F = BqvCharge moves in arc of circle of radius r = mv/qB

Magnetic Flux (ϕ) weber (Wb)

Through an area *A*: $\phi = BA$ (field lines perpendicular to *A*).

Induced EMF in a magnetic field

For a coil with N turns, each with flux ϕ , $\mathcal{E} = -N d\phi/dt$

WAVES

ENERGY TRANSFER BY WAVES

Transfer of energy without the transfer of matter

Transverse and Longitudinal $\mathbf{v} = \mathbf{f} \lambda$: \mathbf{v} = velocity: \mathbf{f} = frequency: λ = wavelength

Intensity

E = hf (*h* is the Planck constant)

RADIOACTIVITY

NUCLEAR STRUCTURE

Atomic (proton) number Z = number of protons (and electrons) in the atom (determines the chemical properties)

Mass (nucleon) number A = number of protons plus number of neutrons

The strong nuclear force holds together all the nucleons.

(Number of neutrons (n) approximately the same as the number of protons (p).

Isotopes

Atoms with same atomic number (and so chemically similar) but different atomic mass number

NUCLEAR DECAY

Alpha emission

(Helium nucleus: ${}^{4}_{2}$ He, 2p + 2n)

Beta minus emission

High-energy electron (and antineutrino): emission by "weak interaction"

Gamma emission

Electromagnetic radiation (high frequency)

Decay Constant

 λ = probability of decay in a fixed time

$$= - \left(\frac{dN}{dt}\right)/N$$

When some have decayed fewer remain so the rate of decay falls.

 $N_t = N_0 e^{-\lambda t}$ (cf. decay of charge on a capacitor)

Half-life $(T_{1_{l_2}})$

Time for half to decay $T_{1_{l_2}} = \ln 2 / \lambda = 0.69 / \lambda$

Radiation Quantities and Units

Time

Activity becquerel (Bq) is one disintegration per second Absorbed dose gray (Gy) is the dose when 1 joule is absorbed by 1 kg of tissue **Dose equivalent sievert** (S_V) is related to the biological harm caused by the absorbed dose. *

Binding energy

If nucleus is bound its mass will be less (Δm) than the sum of its parts. Binding energy = $\Delta m c^2$

MISCELLANEOUS

IDEAL GASES

Pressure (P) pascal (Pa): 1 Pa = 1 newton per square metre

 $P = \frac{1}{3} \rho \overline{c^2}$ For 1 mole $PV_m = RT$

THERMAL EFFECTS

 $\Delta Q = mc\Delta \theta$ Particles have energy of the order kT. T (kelvin) = θ °C + 273.15

Boltzmann factor $n_1 / n_2 = e^{\left(\frac{-E}{kT}\right)}$

ELASTIC MATERIALS

Stress $\sigma = F/A$ (Pa) Strain $\varepsilon = x/L$ (no unit) The Young Modulus (E) = σ/ε (Pa)

Elastic Strain Energy = $\frac{1}{2} k x^2$ (Compare with capacitors).

ATOMIC ENERGY AND LINE SPECTRA

Electrons in atoms regarded as matter waves De Broglie wavelength for electrons $\lambda = h/mv$ Series of "*allowed*" energy levels and consequent characteristic spectrum

PHOTOELECTRIC EFFECT

Photons incident on a surface may cause electrons to be emitted. Energy of electron is determined by frequency of incident radiation and surface material

SIMPLE HARMONIC MOTION

Occurs when the force on an object is directed towards a point and its magnitude is proportional to the distance from a point. $\mathbf{F} = -\mathbf{k}\mathbf{x}$

Acceleration = $-\omega^2 x = -(k/m) x T = \frac{2\pi}{\omega} T = 2\pi (m/k)^{1/2}$

Maximum velocity = ωA (A = amplitude). Displacement = $A \cos (\omega t + \phi)$

Energy of oscillation = $\frac{1}{2} kA^2 = \frac{1}{2} mv^2 + \frac{1}{2} kx^2$

W = work function (for material involved)

MECHANICS

MECHANICAL QUANTITIES

Mass (m) kilogram (kg) Scalar

The mass of an object is a measure of the difficulty of changing its velocity. *

1 kg is the mass of the international prototype of the kilogram stored in Paris.

Force (\mathbf{F}) newton (\mathbf{N}) Vector

An unbalanced force causes a mass to accelerate: F = ma1 newton is the force required to accelerate 1 kg at 1 m s⁻² Weight of an object: is the gravitational force between it and the Earth On the Earth's surface 1 kg weighs approximately 10 N

Energy (E) joule (J) Scalar

1 joule is the energy change when a force of 1 newton acts through 1 metre gravitational potential energy change = weight x vertical distance moved = mghKinetic energy = $\frac{1}{2}mv^2$

Power (P) watt (W) Scalar

Rate of transforming energy 1 watt = $1 Js^{-1}$

Momentum (p) mass x velocity. $(kg ms^{-1})$ or Ns Vector

Force = rate of change of momentum: Force x time (impulse) = momentum change

Equations of Motion v = u + at $v^2 - u^2 = 2as$ $s = ut + \frac{1}{2}at^2$

CONSERVATION LAWS

Always apply providing the entire system is taken into account. Energy is conserved, but can transform from one form to another. Momentum is conserved

CIRCULAR MOTION

Assume speed is constant (but velocity changing) ω = angular velocity (*v/r*) (radian/second) *T* = period for 1 rotation *T* = $2\pi/\omega$

Acceleration (toward centre) = ${}^{\nu}{}^{2}$ / r = ω^{2} r

Prefixes							
10 ⁻²⁴	10 ⁻²¹	10 ⁻¹⁸	10 ⁻¹⁵	10 ⁻¹²	10 ⁻⁹	10 ⁻⁶	10 ⁻³
yocto	zepto	atto	femto	pico	nano	μ (micro)	milli

DATA

Acceleration of free fall (in UK) g	$= 9.81 \text{ ms}^{-2}$
Gravitational field strength (in UK) g	= 9.81 Nkg ⁻¹
Gravitational constant G	$= 6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$
Electric force constant $k = 1 / 4 \pi \varepsilon_o$	$= 8.98 \times 10^9 \mathrm{Nm^2C^{-2}}$
Speed of light in a vacuum c	$= 3.00 \times 10^8 \text{ ms}^{-1}$
Permeability of free space μ_o	$= 4\pi \times 10^{-7} \text{ NA}^{-2}$
Permittivity of free space ε_o	$= 8.85 \times 10^{-12} \text{ Fm}^{-1}$
Planck constant h	$= 6.63 \times 10^{-34} \text{ Js}$
Elementary electron charge e	= -1.60 x 10 ⁻¹⁹ C
Electron rest mass m_e	= 9.11 x 10 ⁻³¹ kg
Electronvolt eV	= 1.60 x 10 ⁻¹⁹ J
Unified atomic mass constant u	$= 1.66 \times 10^{-27} \text{ kg}$
Proton rest mass m _p	= 1.673 x 10 ⁻²⁷ kg
Neutron rest mass <i>m_n</i>	= 1.675 x 10 ⁻²⁷ kg
Molar gas constant R	$= 8.31 \text{ J. mol}^{-1} \text{K}^{-1}$
Boltzmann constant k	$= 1.38 \times 10^{-23} \text{ JK}^{-1}$
Avogadro constant N_A	$= 6.02 \times 10^{23} \text{ mol}^{-1}$
Standard Temperature & Pressure (STP) is	273.15 K and 1.01 x 10^5 Pa
Molar volume at STP V_m	$= 22.4 \times 10^{-3} \text{ m}^3 \text{mol}^{-1}$

Helpful Websites

www.bubl.ac.uk/link A general source www.psigate.ac.uk Search information portal www.eevl.ac.uk Engineering (and some science) data www.npl.co.uk/thelearningroom National Physical Laboratory http://education.iop.org Institute of Physics site www.physics.org IOP site for homework help

VOUR GUIDE TO PHYSICS ON THE INTERNET

Author's Note

This is intended as a quick revision guide and not a definitive reference. While some of the equations are 'correct', they are not a true definition. Where this occurs this is indicated with an asterix (\star). Bold is for emphasis and does not signify a vector.

10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵	10 ¹⁸	10 ²¹	10 ²⁴	
kilo	Mega	Giga	Tera	Peta	Exa	Zetta	Yotta	